0.检查配置
1.VMWare上运行的Ubuntu,并不能支持真实的GPU(除了特定版本的VMWare和特定的GPU,要求条件严格,所以我在VMWare上搭建好了Caffe环境后,又重新在Windows 7 64bit系统上安装了Ubuntu 14.04 64bit系统,链接在此,以此来搭建Caffe GPU版本);
2.确定GPU支持CUDA
输入:
lspci | grep -i nvidia
显示结果:
我的是GTX 650,然后到CUDA GPUs去验证,支持CUDA;
3.确定Linux版本支持CUDA
输入:
uname -m && cat /etc/*release
结果显示:
4.确定系统已经安装了GCC
输入:
gcc --version
结果显示:
5.确定系统已经安装了正确的Kernel Headers和开发包
输入:
uname -r
结果:4.2.0-35-generic,这个是必须安装的kernel headers和开发包的版本;
安装对应的kernels header和开发包,
sudo apt-get install linux-headers-$(uname -r)
1.Install CUDA
下载CUDA,从https://developer.nvidia.com/cuda-downloads,下载对应版本的cuda安装包,我下载的是deb(local)版,
安装CUDA,运行如下命令,即可安装CUDA;
sudo dpkg -i cuda-repo-ubuntu1404_7.5-18_amd64.deb sudo apt-get update sudo apt-get install cuda
安装完成后,重启一下;
2.安装cuDNN
下载cuDNN,从https://developer.nvidia.com/rdp/cudnn-download,注册,然后下载,
注意事项: 有可能由于最新cuDNN不稳定,导致后续caffe工程编译失败,报出如下错误,详情参考第三个链接,这时可以回退一下,下载较新版本的cuDNN;
CXX src/caffe/test/test_im2col_layer.cpp In file included from ./include/caffe/util/device_alternate.hpp:40:0, from ./include/caffe/common.hpp:19, from ./include/caffe/blob.hpp:8, from src/caffe/test/test_im2col_layer.cpp:5: ./include/caffe/util/cudnn.hpp: In function ‘void caffe::cudnn::createPoolingDesc(cudnnPoolingStruct**, caffe::PoolingParameter_PoolMethod, cudnnPoolingMode_t*, int, int, int, int, int, int)’: ./include/caffe/util/cudnn.hpp:127:41: error: too few arguments to function ‘cudnnStatus_t cudnnSetPooling2dDescriptor(cudnnPoolingDescriptor_t, cudnnPoolingMode_t, cudnnNanPropagation_t, int, int, int, int, int, int)’ pad_h, pad_w, stride_h, stride_w)); ^ ./include/caffe/util/cudnn.hpp:15:28: note: in definition of macro ‘CUDNN_CHECK’ cudnnStatus_t status = condition; \ ^ In file included from ./include/caffe/util/cudnn.hpp:5:0, from ./include/caffe/util/device_alternate.hpp:40, from ./include/caffe/common.hpp:19, from ./include/caffe/blob.hpp:8, from src/caffe/test/test_im2col_layer.cpp:5: /usr/local/cuda/include/cudnn.h:799:27: note: declared here cudnnStatus_t CUDNNWINAPI cudnnSetPooling2dDescriptor( ^ Makefile:572: recipe for target '.build_release/src/caffe/test/test_im2col_layer.o' failed make: *** [.build_release/src/caffe/test/test_im2col_layer.o] Error 1
拷贝cuDNN库文件到cuda目录下,
tar -zxvf cudnn-7.0-linux-x64-v4.0-prod.tgz cd cuda sudo cp lib64/* /usr/local/cuda/lib64/ sudo cp include/cudnn.h /usr/local/cuda/include/
设置环境变量,在/etc/profile中添加CUDA环境变量,
sudo gedit /etc/profile #在打开的文件中加入如下两句话 export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
保存后,使环境变量立即生效,
source /etc/profile
进入/usr/local/cuda/samples,执行下面的命令来build samples,
sudo make all -j4
全部编译完成后,进入 samples/bin/x86_64/linux/release,运行deviceQuery,
./deviceQuery
如果出现显卡信息,则驱动及显卡安装成功,结果如下:
3.编译caffe
修改caffe/Makefile.config,
# cuDNN acceleration switch (uncomment to build with cuDNN). USE_CUDNN := 1#去掉这个注释 # CPU-only switch (uncomment to build without GPU support). # CPU_ONLY := 1#加上这个注释
然后输入,
make clean#第一次编译,不需要执行 make all make test make runtest
显示结果:
编译pycaffe,
make pycaffe
4.mnist数据测试
cd caffe # 下载mnist数据 sh data/mnist/get_mnist.sh sh examples/mnist/create_mnist.sh ./examples/mnist/train_lenet.sh
执行结果,
和CPU版本Caffe学习笔记1--Ubuntu 14.04 64bit caffe安装的mnist数据测试相比,速度明显提升;当时我运行脚本后,就开始看书,刚看完一页,抬头发现已经运行完毕,第一次用GPU计算,虽然只是很渣的GTX 650,但依然对GPU的运算能力感到佩服;
5.深度学习开源库环境搭建大礼包
昨晚群里一个哥们分享了一个github链接,涵盖了主流深度学习开源库的环境搭建,包括Nvidia驱动、CUDA、cuDNN、TensorFlow、Caffe、Theano、Keras、Torch,链接在此,他的配置是Ubuntu 14.04 64bit + Nvidia Titan X,还是适用于好多朋友的机器的,所以好东西还是要分享给大家;
这条消息对我而言既是好消息,又是坏消息,好消息就是这个大礼包真的很棒,坏消息就是我把环境搭建好之后,才知道这个消息。不过,在搭建环境的过程中,自己踩过一些坑,也算是一个熟悉Linux的过程吧,环境搭建好了,还是很开心的;